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The H-theorem for a classical gas of polyatomic molecules of arbitrarily com- 
plex structure is examined. A simple use of time reversal invariance of the 
equations of dynamics is used to circumvent the objections which were raised by 
Lorentz against Boltzmann's proof (nonexistence of inverse collisions). 
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1. INTRODUCTION 

Since the publication, in 1872, of the famous memoir of Boltzmann, (1) 
containing, as one of its many remarkable features, the proof of the 
H-theorem for monatomic gases, the debate on the meaning of this result 
has gone on and we can say that even today one can find scepticism about 
the meaning of this basic contribution of Boltzmann's to nonequilibrium 
statistical mechanics. (2) 

It is even more surprising, therefore, to find that the extension of the 
H-theorem to a gas whose molecules are arbitrarily complex structures, 
which was proposed by Boltzmann in the same basic paper ~l) and subse- 
quently criticized by Lorentz, (3) is not usually discussed in treatises on 
kinetic theory, even those which deal with explicit models for polyatomic 
molecules, (4) with the notable exceptions of Boltzmann's "Lectures ''~5) and 
Tolman's book. (6) 

As is well known, Lorentz's objection to Boltzmann's proof is based on 
the fact that one cannot expect to find any inverse collision for an 
arbitrarily chosen collision, with the exception of molecules having a 
spherically symmetric interaction. We underline the circumstance that it is 
not the geometric shape of the molecules which matters but rather the 
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details of the interaction, as shown by the case of rough spherical mole- 
cules.(7,8, 4) 

Boltzmann tried hard to fight with the objections of Lorentz. He 
carefully distinguished between initial and final, time reversed and corre- 
sponding "constellations," finally arriving at the so-called cycle proof of the 
H-theorem. (9'5'6) It is not clear, however, that this argument really proves 
something, and as recently as 1972, G. E. Uhlenbeck (~~ stated that he had 
some doubts about these generalizations. He then suggested a way of 
escape in the quantum treatment of the collisions, as developed by L .  
Waldmann (11'12) and R. F. Snider. (13) As a matter of fact the possibility of 
finding a proof of the H-theorem for polyatomic gases in quantum mechan- 
ics as a consequence of the unitariety of the scattering matrix had been 
pointed out as early as 1952 in a paper by Stueckelberg (14) and described 
later in connection with a quantum Boltzmann equation by Waldmann. (15) 

It is the purpose of this paper to point out that there is a proof of the 
H-theorem for a gas of purely classical molecules with arbitrarily complex 
structure. The starting point will be the reciprocity relation for the scatter- 
ing probability; the latter holds because of the time-reversible character of 
the equations of the dynamics. 

2. BASIC EQUATIONS 

We shall deal with molecules described by a set of variables, which will 
include the position vector x and other variables which will be collectively 
denoted by p (p will be a vector in an n-dimensional space); the latter will 
include, e.g., velocity and angular velocity or angular momentum. 

The distribution function f = f(x, p, t) will satisfy an evolution equation 
of the form 

~ f + p .  Of f l f e  O-t -~p = f(x, p', t)f(x, p;,  t) W(p', p, ---) p, p,) 

-f(x,p,t)f(x,p,,t)W(p,p,~p',p;)] dp, dp'dp', (2.1) 

where P is a n-dimensional vector which is assigned when the causes 
different from collisions deviating the molecules from rectilinear paths are 
given through the equation of collision-free motion: 

li = P(x,  p) (2.2) 

In Eq. (2.1) p,  denotes the variables of the partner of p in a collision, p', p~ 
the variables of two molecules which end up in the state p and p, ,  
respectively, at the end of a collision. The transition "probability" W(p', p~ 
~ p ,  p,) is essentially the differential cross section multiplied by relative 
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speed, and in fact one has 

f f W(p', PlP,)  alp' dp~ = [~ - s (2.3) 

where a s is the total cross section. The latter could, in principle, depend on 
the variables p and p,  ; as a matter of fact we shall assume that it does not, 
by a sort of trick. First, we shall assume that no interaction takes place 
when the molecules are separated by more than a certain distance r 0 (finite 
range interaction). We can then assume that o t is exactly 1fro 2 provided we 
allow the presence of no-scattering events in W: in other words if for 
certain values of p', p.  there is no interaction between the molecules even at 
a distance smaller than r0, we shall consider W different from zero there 
and actually proportional to a delta function ensuring that no change takes 
place during the "collision." This convention will notably simplify our 
treatment. The case of infinite range interaction can be dealt with, if 
desired, by a limiting procedure on the results which will be established 
here. 

We remark that the time reversibility of the equation of motion implies 
that there is a transformation p ~ p -  (typically p-  = - p )  such that 

W(p', p; --> p, p,)  = W(p- ,  p ,  ~ p ' - ,  p~, - ) (2.4) 

This property will be called as usual "reciprocity." In addition the transfor- 
mation from p to p-  is measure preserving. In the case of a perfectly 
spherical interaction, the additional property 

W ( p ' , p ~ p , p , )  = W(p,p,-->p',p;) (2.5) 

called detailed balance, applies. 
Use of Eq. (2.5) would allow a proof of the H-theorem by a word-by- 

word repetition of the proof holding for the monatomic gas. If Eq. (2.5) 
fails, then one usually invokes Boltzmann's argument based on the assump- 
tion of "closed cycles of collisions, ''(9'5'6~ which many authors have found 
difficult to follow. The main feature of the proof, however--viz., that many 
collisions have to be lumped together--is the key to the proof in the 
quantum case as well as to the proof for the classical equation which we are 
presenting here. We integrate both sides of Eq. (2.4) with respect to p, p, to 
find 

ffW(p',p'.~p,p.)dpdp.=ffW(p-,p.~p'-,p'.-)dpdp. 
= f f W(p,p.->p'-,p.-)dpdp. (2.6) 

where we have changed the integration variables from p, p,  to p , p,  and 
then suppressed the minus superscript, which is no longer needed (dpdp,  
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= dp-dp , ) .  The last integral in Eq. (2.6) is nothing else, according to Eq. 
(2.3), than 

I~j- -~',-Io, = l~' - ~',[o, = f f W(p,p,~p',p' ,)dpdp, (2.7) 

where ~'- = -~ '  and ~ , -  = - ~  and the constancy of o t have been used. 
Equations (2.6) and (2.7) together give 

f f W(p',p'.-,p,p.)dpdp.=f f W(p,p..p',p'.)dpdp. (2.8) 

This is a basic new relation which will be used in the next section to 
prove the H-theorem. The importance of a relation such as Eq. (2.8) was 
stressed by Waldmann, who, guided by the analogous relation in the 
quantum case, wrote it for the first time in the particular case of a gas of 
classically rotating linear molecules. (16) He did not present, however, any 
proof of Eq. (2.8) but stated that "one must get the (purely mechanical) 
normalization property" expressed by Eq. (2.8). As a possible proof he 
seems to hint at a complete calculation with the simplifying assumption of 
"averaging over all possible phase angles before and after collision." This 
averaging, though practically convenient in order to avoid the use of 
ignorable coordinates (in the absence of external electric fields), is not 
required in our direct proof. According to our approach, Eq. (2.8) is a 
general property following from the time reversibility of the microscopic 
equations of motion. 

3. PROOF OF THE H-THEOREM FOR POLYATOMIC MOLECULES 

It is now a simple matter to prove Boltzmann's lemma, according to 
which if we let 

Q(/, f) -- f f Efi; w(p', p~ -~ p, p,) - / / ,  w(p, p,-~ p,, p~) ] dp, dp' dp, 
(3.1) 

then 

flog f Q(f, f )  dp < 0 (3.2) 

f', f~,, f . ,  in Eq. (3.1) denote, as usual, the distribution function f having, 
as p-argument, p', p~, p.,  respectively. This lemma is the basic prerequisite 
for the proof of the H-theorem: if Eq. (3.2) holds, then the proof develops 
in the traditional way. (1,4,5,17,18) 
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In fact we multiply Eq. (3.1) by log f and integrate, we obtain 

f l og f  O(f,f)dp 

= �89 f f f f ::,log t W(p,p.-->p',p'.)dpdp. dp'dp'. (3.3) 

This relation can be obtained by standard manipulations, i.e., suitable 
changes of variables and labels and does not involve any use of the 
properties of W(p,p.~p',p~). Equation (3.3) does not permit to use the 
standard argument for proving the H-theorem; to use the latter one should 
add to Eq. (3.3) the same equation after having interchanged primed and 
unprimed variables and use Eq. (2.5), which, however, does not hold in 
general. 

At this point we use a mathematical trick which seems to have been 
suggested by Pauli (14) in connection with the quantum mechanical proof. 
Along with the identity expressed by Eq. (3.3) we consider the other 
identity 

f f% w(p',p', -~p,p,)dpdp, dp' dp',= f ff, W(p,p,->p',p',)dpdp, dp' dp', 
(3.4) 

which follows from a change of labels and expresses conservation of mass. 
In the left-hand side of Eq. (3.4) we can transform the integral over the 
unprimed variables according to Eq. (2.8) to obtain 

f f'j; W(p,p.~p',p'.) dpdp.dp' dp'.= f ff. W(p,p.-)p',p'.)dpdp.dp' dp. 
(3.5) 

or equivalently 

ff, --~,-1 W(p,p,-->p',p',)dpdp, dp'dp,=O (3.6) 

Hence we can subtract the integral appearing in the left-hand side of Eq. 
(3.6) from the right-hand side of Eq. (3.6) without changing anything. We 
obtain 

[ f l og fQ( f , f )dp=l f f f f f f ,  log f-ff~, - f ~ ,  

• W(p,p.-->p',p'.)dpdp. dp'dp'. (3.7) 
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Since f, f , ,  W are positive and 

logx - (x - 1) < 0 (3.8) 

the equality sign holding if and only if x = 1, we conclude that inequality 
(3.2) is proved, the equality sign applying if and only if (almost every- 
where): 

f ' f ~  = f f ,  (3.9) 

This relation, as is well known, leads to the equilibrium distribution (log f 
must be a linear combination of the collision invariants). 

4. CONCLUDING REMARKS 

Interest in the classical kinetic theory of polyatomic gases has revived 
since the theoretical work of Kagan and co-workers (19'2~ and the rediscov- 
ery of the Senftleben-Beenakker effect by Beenakker and co-workers. (21) 
Usually, however, theoretical considerations have been based on the quan- 
tum mechanical version of the Boltzmann equation, the so-called Boltz- 
mann-Waldmann-Snider  equation, even when quantum aspects were 
clearly irrelevant. This attitude was partly justified by the feeling that 
clarification of some aspects of the classical model were required. Recently 
proofs were offered of the fact that one can pass to the limit h ~ 0 in the 
quantum equation to obtain perfectly reasonable nonlinear (22) or linear- 
ized (23) classical equations. The latter paper also supplies error estimates 
when quantum effects are neglected. 

In this paper we have offered a proof of the H-theorem for the 
classical Boltzmann equation for polyatomic molecules. This proof avoids 
all the difficulties which Boltzmann and subsequent writers met in discuss- 
ing the theorem in the case of a nonspherical interaction. It is hoped that 
this analysis will dissipate some suspicion about the use of classical models 
for the description of gases, whose molecules have a complex structure. 
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